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Abstract. We show that there are two different families of (weakly) orthogonal polynomials
associated to the quasi-exactly solvable Razavy potentialV (x) = (ζ cosh 2x − M)2 (ζ > 0,
M ∈ N). One of these families encompasses the four sets of orthogonal polynomials recently
found by Khare and Mandal, while the other one is new. These results are extended to the related
periodic potentialU(x) = −(ζ cos 2x −M)2, for which we also construct two different families
of weakly orthogonal polynomials. We prove that either of these two families yields the ground
state (whenM is odd) and the lowest-lying gaps in the energy spectrum of the latter periodic
potential up to and including the(M − 1)th gap and having the same parity asM − 1. Moreover,
we show that the algebraic eigenfunctions obtained in this way are the well known finite solutions
of the Whittaker–Hill (or Hill’s three-term) periodic differential equation. Thus, the foregoing
results provide a Lie-algebraic justification of the fact that the Whittaker–Hill equation (unlike, for
instance, Mathieu’s equation) admits finite solutions.

1. Introduction

The one-dimensional quantum mechanical potential

V (x) = (ζ cosh 2x −M)2 (1.1)

whereζ andM are positive real parameters, was first studied by Razavy [1]. ForM > ζ , the
above potential (which we shall henceforth refer to as theRazavy potential) is a symmetric
double well. This type of potential has been extensively used in the quantum theory of
molecules as an approximate description of the motion of a particle under two centres of
force. In particular, the Razavy potential has been proposed by several authors as a realistic
model of a proton in a hydrogen bond [2–5]. The potential (1.1) has also been recently used
by Ulyanov and Zaslavskii [6], as an effective potential for a uniaxial paramagnet.

Razavy showed that whenM is a positive integer the lowestM energy levels of the
potential (1.1) (with their corresponding eigenfunctions) can be exactly computed in closed
form. The Razavy potential is thus an example of aquasi-exactly solvable(QES) potential, for
which part (but not necessarily all) of the spectrum can be computed exactly. A very important
class of QES potentials, that we shall callalgebraic in what follows‖, are characterized by

§ On leave of absence from Departamento de Fı́sica Téorica II, Universidad Complutense de Madrid, Spain.
‖ There is, unfortunately, no clear consensus in the literature regarding this terminology. The term ‘quasi-exactly
solvable potential’ is, we believe, originally due to Turbiner and Ushveridze [7], who used it to refer to what we have
just calledalgebraicQES potentials. However, in the last couple of years there has been a growing tendency to use
the adjective ‘quasi-exactly solvable’ for any potential, be it algebraic or not, part of whose spectrum can be exactly
computed. We have preferred in this paper to adhere to this increasingly common usage to avoid confusion.
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the fact that the corresponding quantum Hamiltonian is an element of the enveloping algebra
of a finite-dimensional Lie algebra of differential operators (the so-calledhidden symmetry
algebra) admitting a finite-dimensional invariant module of smooth functions. That such a
potential is QES follows immediately from the fact that the finite-dimensional module of the
hidden symmetry algebra is obviously left invariant by its enveloping algebra, and in particular
by the Hamiltonian. Therefore, a number of energy eigenvalues and eigenfunctions equal to
the dimension of the invariant module can be computed algebraically, by diagonalizing the
finite-dimensional matrix of the restriction of the Hamiltonian to the module.

One-dimensional algebraic QES potentials were studied as such for the first time by
Turbiner [8], who used as hidden symmetry algebra a realization ofsl(2,R) in terms of first-
order differential operators. These potentials were then completely classified by González-
Lópezet al [9,10]. There are exactly ten families of one-dimensional algebraic QES potentials,
five of which are periodic and the remaining five all have point spectrum. In all cases, the
hidden symmetry algebra is againsl(2,R).

Recently, Bender and Dunne [11] associated a family of (weakly) orthogonal polynomials
to the class of algebraic QES potentials given by

V (x) = (4s − 1)(4s − 3)

4x2
− 2(2s + 2J − 1)x2 + x6 s ∈ R J ∈ N.

This construction was immediately extended by the authors of this paper to virtually all
one-dimensionalalgebraicQES potentials in [12]. Krajewskaet al [13] proved that a set
of weakly orthogonal polynomials can be constructed explicitly for any (not necessarily
algebraic) QES Hamiltonian tridiagonalizable in aknownbasis. Khare and Mandal have
constructed two families of non-orthogonal polynomials associated to a pair of non-algebraic
QES potentials [14]†. It is important to note that the family of polynomials associated to a
given Hamiltonian is not unique, but depends on the type of formal expansion defining the
polynomials. It is therefore conceivable that one could obtain orthogonal polynomials in the
examples studied in [14] by considering different expansions.

The Razavy potential has been recently revisited by Khare and Mandal [15] and Konwent
et al [16]. The former authors, who were mainly interested in the properties of the associated
polynomial system, introduced four different sets of polynomials{P εk (E)}∞k=0 and{Qε

k(E)}∞k=0
(ε = 0, 1) for the Razavy potential (1.1) through the formulae

ψE(x) = e−
ζ

2 z(z− 1)ε/2
∞∑
k=0

P εk (E)

(2k)!

(
z + 1

2

)k
and

ψE(x) = e−
ζ

2 z(z− 1)ε/2
∞∑
k=0

Qε
k(E)

(2k + 1)!

(
z + 1

2

)k+ 1
2

where

z = cosh 2x (1.2)

andψE denotes a formal (i.e., not necessarily square-integrable) eigenfunction of

H = −∂2
x + (ζ cosh 2x −M)2

† Some of the formulae for the polynomials associated to these potentials contain errata. Indeed, the change of variable
(8) should readt = (y + ε2)1/2, and the factor multiplyingn in the coefficient ofQn(s) in the recursion relation (11)
should beε2(4s + 1), this affecting formulae (12) and (13). Likewise, in formula (21) the term(a +b+c− 3

2)
2 should

be(a + b + c + n− 3
2)

2.
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with eigenvalueE and parity†(−1)ε . Without loss of generality, we shall choose the usual
normalization

P ε0 (E) = Qε
0(E) = 1.

Imposing that(H − E)ψE(x) = 0 one easily shows that each of the four sets{P εk (E)}∞k=0
and{Qε

k(E)}∞k=0 (ε = 0, 1) satisfies a three-term recurrence relation of the appropriate form
(see (2.12) and [17]), and therefore forms an orthogonal polynomial system with respect to a
suitable Stieltjes measure.

We thus have four seemingly unrelated sets of orthogonal polynomials associated to the
Razavy potential (1.1). This is surprising, since in all the previous examples only one set
of orthogonal polynomials was constructed for each QES potential considered. One of the
objectives of this paper is precisely to explain how these four sets of orthogonal polynomials
arise. The key to this explanation is the fact (not taken into account in [15]) that the Razavy
potential is not just QES, butalgebraic. More precisely, we shall show in section 2 that the
Razavy potential can be written as a polynomial in the generators of a suitable realization of
sl(2,R) in two different ways. Using the constructive method explained in [12], these two
different realizations of the Razavy potential as an algebraic QES potential give rise to two
different families of orthogonal polynomials. One of these two families encompasses in a
natural way the four sets of orthogonal polynomials of Khare and Mandal’s. In fact, all the
properties of these four sets found in [15] (weak orthogonality, factorization, etc) are immediate
consequences of the general properties of the system of orthogonal polynomials associated to
an algebraic QES potential developed in our previous paper [12]. The second realization of
(1.1) as an algebraic QES potential yields yet another set of orthogonal polynomials different
from the four sets found by Khare and Mandal. The properties of this family, which again
follow from the general theory developed in [12], are in many respects simpler than those
of the first family. For example, the moment functional associated to the second family is
positive semidefinite, while this is not the case for the first family. All of these facts make, in
our opinion, the second family more practically convenient for finding the exactly computable
energy levels of the Razavy potential.

In section 3 we study the trigonometric version of the Razavy potential, given by

U(x) = −(ζ cos 2x −M)2. (1.3)

This potential, which is a simple model for a one-dimensional periodic lattice, appears
in Turbiner’s list of QES one-dimensional potentials, [8], and was also touched upon by
Shifman [18] (in the particular case in whichM is an odd positive integer). Ulyanov and
Zaslavskii [6], have related the trigonometric Razavy potential (1.3) to a quantum spin system.
The potential (1.3) has also recently appeared as the coupling term between the inflaton field
and matter scalar fields in theories of cosmological reheating after inflation with a displaced
harmonic inflation potential [19].

The trigonometric Razavy potential (1.3) is the image of the hyperbolic Razavy potential
(1.1) under the anti-isospectral transformationx 7→ ix, E 7→ −E, recently considered by
Krajewskaet al [20]. It is therefore to be expected that the properties of the polynomials
associated to this potential are analogous to the corresponding properties for the hyperbolic
Razavy potential (1.1). That this is indeed the case is shown in section 3, where we prove
that the potential (1.3) can be realized in two different ways as an algebraic QES potential.
As in the hyperbolic case, each of these two different realizations gives rise to a family of
orthogonal polynomials. For each positive integer value ofM it is possible to exactly compute
M eigenfunctions (with their corresponding energies) of the trigonometric Razavy potential by

† Where(z− 1)1/2 should of course be interpreted as
√

2 sinhx.
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Figure 1. Structure of the energy spectrum of the potential (1.3) forM = 4 and 5. The thick
horizontal segments represent the allowed energy bands. The solid circles stand for the algebraically
computable energies, which determine the gaps represented by thin solid lines. The remaining
boundaries of the allowed bands, and hence the energy gaps shown as dotted lines, cannot be
exactly computed.

purely algebraic procedures. It was previously known on general grounds [18] that the energies
of theseM eigenfunctions must be boundary points of allowed bands (or, equivalently, gaps)
in the energy spectrum of the periodic potential (1.3). In section 3 we investigate the exact
position of these boundary points in the spectrum of (1.3). We show that, if the gaps in the
energy spectrum are numbered consecutively in order of increasing energy, these points yield
precisely the ground state (whenM is odd) and the lowest [M2 ] gaps† of the same parity as
M − 1. For instance, ifM = 4 we obtain the first (lowest) and the third gap, whereas for
M = 5 we get the ground state and the second and fourth lowest gaps (see figure 1).

The paper ends with a discussion of the above results in the context of the classical theory
of Hill’s equation. We show that the algebraic eigenfunctions constructed in this paper are
precisely the so-called finite solutions of the Whittaker–Hill (or Hill’s three-term) equation.
In fact, our analysis provides a Lie-algebraic explanation of why the Whittaker–Hill equation
admits finite solutions at all. Indeed, from our point of view this is just a simple consequence
of the fact that the Schrödinger operator with potential (1.3) is algebraically QES.

2. The hyperbolic Razavy potential

We shall show in this section that the hyperbolic Razavy potential (1.1) can be expressed in
two different ways as an algebraic QES potential. From these two representations we shall
derive two different families of associated orthogonal polynomials, whose properties we shall
discuss.

Consider, in the first place, the second non-periodic algebraic QES potential listed in [10]
(p 127), given by

V (x) = A cosh2
√
νx +B cosh

√
νx +C coth

√
νx csch

√
νx +D csch2

√
νx (2.1)

where the coefficientsA,B,C,D can be expressed in terms of four parametersb̂, ĉ, d̂ ∈ R
andn ∈ N ∪ {0} as follows (see [9], equation (5.11)):

A = b̂2

4ν
B = b̂

2ν
[ĉ + (n + 1)ν] C = b̂ + d̂

2ν
[ĉ − (n + 1)ν]

D = 1

4ν
[(b̂ + d̂)2 + (ĉ − (n + 1)ν)2 − ν2].

(2.2)

The hyperbolic Razavy potential is of the form (2.1) (up to an inessential additive constant)
provided that

ν = 4 C = D = 0 A = ζ 2 B = −2Mζ.

Using equation (2.2) we obtain the following system in the parametersb̂, ĉ, d̂ andn:

b̂2 = 16ζ 2 (2.3)

† We denote by [x] the integer part of the real numberx.
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Table 1. Values ofd̂ andM corresponding to the four solutions of equations (2.3)–(2.6).

d̂ M σ η

4ζ 2n + 1 1 0
4ζ 2n + 3 −1 0
4(ζ − 1) 2n + 2 0 1
4(ζ + 1) 2n + 2 0 −1

b̂[ĉ + 4(n + 1)] = −16Mζ (2.4)

(b̂ + d̂)[ĉ − 4(n + 1)] = 0 (2.5)

(b̂ + d̂)2 + [ĉ − 4(n + 1)]2 = 16. (2.6)

From equations (2.3) and (2.4) and the normalizability conditionb̂ < 0 (see [9],
equation (5.14)), we get

b̂ = −4ζ ĉ = 4(M − n− 1).

Substituting these into the remaining conditions (2.5) and (2.6) we are led to four different
solutions ford̂ andM, which may be written in a unified way as

M = 2(n + 1)− σ ĉ = 4(n + 1− σ) d̂ = 4(ζ − η)
where the parametersσ andη are given in table 1.

It follows from the general discussion in [9] that the change of variable (1.2) and the gauge
transformation determined by

µ̂(z) = (z− 1)
1
4 (1−σ−η)(z + 1)

1
4 (1−σ+η)e−ζz/2 (2.7)

map the Razavy Hamiltonian into an operatorĤg (thegauge Hamiltonian) belonging to the
enveloping algebra of the realization ofsl(2,R) spanned by†

J− = ∂z J0 = z∂z − n
2

J+ = z2∂z − nz. (2.8)

Indeed,

Ĥg(z) = 1

µ̂(z)
· [−∂2

x + (ζ cosh 2x −M)2] · µ̂(z)
∣∣∣∣
x= 1

2 arccoshz

= −4(J 2
0 − J 2

− − ζJ+ + (n + 1− σ)J0 + (ζ − η)J−)− c∗ (2.9)

where

c∗ = −3(n + 1)2 + 2(n + 1)σ + 2ηζ − ζ 2.

According to the general prescription of [12], the formal solutions of the gauged equation

(Ĥg− E)χ̂E = 0 (2.10)

are generating functions for a set of orthogonal polynomials. More explicitly, inserting the
expansion

χ̂E(z) =
∞∑
k=0

P̂k(E)

2k(2k + η−σ+1
2 )!

(z + 1)k (2.11)

† The operatorsJα (α = ±, 0) (and any polynomial thereof) preserve the spacePn of polynomials inz of degree
at mostn. Moreover, anykth-order differential operator (k 6 n) preservingPn may be expressed as akth-degree
polynomial in the generatorsJα , [21,22].
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into (2.10), we readily find that the coefficientsP̂k(E) satisfy the three-term recursion relation

P̂k+1(E) = (E − bk)P̂k(E)− akP̂k−1(E) k > 0 (2.12)

where

ak = 16ζk(2k − σ + η)(k − n− 1)

bk = −4k(k + 1− σ + 2ζ ) + (2n + 1)(2(n− σ) + 3) + ζ(ζ − 2η + 4n).
(2.13)

If we impose the conditionP̂0(E) = 1, the coefficients{P̂k(E)}∞k=0 form a set of weakly
orthogonal (monic) polynomials. Therefore, we can construct two sets of weakly orthogonal
polynomials for each value ofM by choosing suitable values forσ , η andn (forM = 1 there
is only one set). These two sets coincide exactly with the sets{P 1−ε

k (E)}∞k=0 and{Qε
k(E)}∞k=0

(with ε = 0 forM even andε = 1 forM odd) studied by Khare and Mandal in [15]. From
now on, we shall use when necessary the more precise notationP̂

ση

k to denote the orthogonal
polynomials defined by equations (2.12), (2.13). For instance, ifM = 4 we haven = 1,σ = 0
andη = ±1 (see table 1). Whenη = 1 the first three polynomials are

P̂ 0+
0 (E) = 1

P̂ 0+
1 (E) = E − ζ 2 − 2ζ − 15

P̂ 0+
2 (E) = E2 − 2(ζ 2 − 2ζ + 11)E + ζ 4 − 4ζ 3 + 10ζ 2 − 28ζ + 105

(2.14)

whereas forη = −1 we obtain

P̂ 0−
0 (E) = 1

P̂ 0−
1 (E) = E − ζ 2 − 6ζ − 15

P̂ 0−
2 (E) = E2 − 2(ζ 2 + 2ζ + 11)E + ζ 4 + 4ζ 3 + 10ζ 2 + 28ζ + 105.

(2.15)

The polynomials (2.14) and (2.15) reduce, respectively, to the polynomialsQ0
k(E) andP 1

k (E)

(k = 0, 1, 2) in formulae (2.18) and (2.17) of [15].
The coefficientak given by (2.13) vanishes fork = n + 1, and thereforeP̂k(E) with

k > n + 1 factorize asP̂n+1+j (E) = Q̂j (E)P̂n+1(E), j > 0, where{Q̂j }∞j=0 also form a set of

(monic) orthogonal polynomials. IfEj is a root of the polynomial̂Pn+1(E) the series (2.11)
truncates atk = n, and thusEj belongs to the point spectrum of the Razavy Hamiltonian. For
example, ifM = 4, the rootsE0, E2 of P̂ 0+

2 (E) are the energies of the ground state and the
second excited state of the Razavy potential, while the rootsE1, E3 of P̂ 0−

2 (E) correspond to
the first and third excited levels. The rest of the spectrum cannot be computed algebraically.

The other usual properties which characterize weak orthogonality—vanishing norms,
finite support of the Stieltjes measure associated to the polynomials, etc [11–13]—are also
satisfied by the polynomials{P̂k(E)}∞k=0. In particular, ifEk (k = 0, . . . , n) are the (different)
roots ofP̂n+1(E), the moment functional associated to the polynomials is

L =
n∑
k=0

ωkδ(E − Ek) (2.16)

where the coefficientsωk are determined by
n∑
k=0

P̂l(Ek)ωk = δl0 l = 0, . . . , n.

It was observed in [15] that not all the coefficientsωk corresponding to the polynomialsP εk
andQε

k are positive. This is, in fact, a direct consequence of the following general property of
an orthogonal polynomial system satisfying a recursion relation of the form (2.12).
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Proposition 2.1. The coefficientsωk of the moment functional (2.16) are positive for all
k = 0, . . . , n if and only ifak > 0 for 0< k 6 n andbk is real for06 k < n.

Proof. The ‘if’ part was proved in [12]†. Letωk > 0 for k = 0, . . . , n. ThenL(p2) > 0 for
any non-vanishing real polynomial of degree at mostn. It follows thatL is positive definite
in P2n = {P ∈ C[E] : degP 6 2n}, for if P ∈ P2n is a nonzero real polynomial which is
non-negative for allE ∈ R, thenP = p2 + q2 for real polynomialsp andq in Pn, and thus
L(P ) > 0. SinceL is positive definite inP2n, the momentsµk = L(Ek) with k = 0, . . . ,2n
are positive for evenk and real for oddk, [17]. Multiplying the recursion relation (2.12) by
P̂k and applyingL we find that

L(EP̂ 2
k )− bkL(P̂ 2

k ) = 0. (2.17)

Taking k = 0, we conclude thatb0 = µ1/µ0 is real. Therefore,P̂1 = E − b0 is real and
a1 = L(P̂ 2

1 ) > 0. By induction, ifbj−1 ∈ R andaj > 0 for j = 1, . . . , k < n, thenP̂k is real,
and from (2.17) we deduce thatbk ∈ R. ThenP̂k+1 is real, and

0< L(P̂ 2
k+1) =

k+1∏
j=1

aj

implies thatak+1 > 0. �

Note that the coefficientsak given by (2.13) are negative for 16 k 6 n and thereforeωk
cannot be positive for allk = 0, . . . , n.

Consider, in the second place, the third non-periodic algebraic QES potential given in [10]
(p 127), namely

V (x) = Ae2
√
νx +Be

√
νx +Ce−

√
νx +De−2

√
νx (2.18)

where the coefficientsA,B,C,D can again be expressed in terms of four parameters
b̂, ĉ, d̂ ∈ R andn ∈ N ∪ {0} as (see [9], equation (5.11)):

A = b̂2

4ν
B = b̂

2ν
[ĉ + (n + 1)ν] C = d̂

2ν
[ĉ − (n + 1)ν] D = d̂2

4ν
. (2.19)

The potential (2.18) reduces to the hyperbolic Razavy potential (1.1) (up to an additive constant)
provided that

ν = 4 A = D = ζ 2

4
B = C = −ζM.

Taking into account the normalizability conditionsb̂ < 0 andd̂ > 0, (see [9], equations (5.24)
and (5.25)), we get the unique solution

b̂ = −2ζ ĉ = 0 d̂ = 2ζ M = n + 1.

In this case, the change of variable

z = e2x (2.20)

and the gauge transformation generated by

µ̃(z) = z 1−M
2 e−

ζ

4 (z+
1
z
) (2.21)

† Note that the proof only requiresbk to be real for 06 k < n.
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map the Razavy Hamiltonian into a differential operatorH̃g quadratic in the generators (2.8),
namely

H̃g(z) = −4J 2
0 + 2ζJ+ − 2ζJ− − c̃∗ (2.22)

where

c̃∗ = −(n + 1)2 − ζ 2.

Following the general treatment of [12], if we insert the expansion

χ̃E(z) =
∞∑
k=0

(−1)kP̃k(E)

(2ζ )kk!
zk (2.23)

into the spectral equation for̃Hg, the coefficientsP̃k(E) are easily found to satisfy a three-term
recursion relation of the form (2.12), with coefficients

ak = 4k(n + 1− k)ζ 2

bk = 4k(n− k) + 2n + 1 +ζ 2.
(2.24)

Taking P̃0(E) = 1, we obtain yet another family of weakly orthogonal (monic) polynomials
{P̃k(E)}∞k=0 associated to the Razavy potential (1.1). For instance, ifM = 4 the first five
polynomials are

P̃0(E) = 1
P̃1(E) = E − ζ 2 − 7
P̃2(E) = E2 − 2(ζ 2 + 11)E + ζ 4 + 10ζ 2 + 105
P̃3(E) = E3− (3ζ 2 + 37)E2 + (3ζ 4 + 46ζ 2 + 435)E − ζ 6− 9ζ 4 − 143ζ 2 − 1575
P̃4(E) = E4 − 4(ζ 2 + 11)E3 + 2(3ζ 4 + 46ζ 2 + 347)E2

−4(ζ 6 + 13ζ 4 + 159ζ 2 + 1155)E + ζ 8 + 4ζ 6 + 86ζ 4 + 1316ζ 2 + 11025.

(2.25)

Note that the polynomial̃P4(E) is the product of the polynomialŝP 0+
2 (E) andP̂ 0−

2 (E) given
in (2.14) and (2.15). Therefore, the algebraic levels can be also obtained as the the roots
E0, . . . , E3 of P̃4(E).

In general, ifM is even the polynomialP̃M(E) factorizes into the product of the
polynomialsP̂ 0±

M/2(E) associated toη = ±1 (see table 1). Alternatively, ifM is odd,P̃M(E)

factorizes into the product of the polynomialsP̂±0
(M±1)/2 associated toσ = ±1. The algebraic

energy levels of the Razavy potential (1.1) can thus be computed in a unified way as the roots
of P̃M . On the other hand, the algebraic eigenfunctions can be written as

ψE(x) = µ(z)χE(z)|z=z(x)
whereµ(z), χE(z) and the change of variablez = z(x) are given by either (1.2), (2.7) and
(2.11), or (2.20), (2.21) and (2.23).

The polynomials{P̃k}∞k=0 verify the usual properties associated to their weak orthogonality.
However, unlike the previous family{P̂k}∞k=0, the coefficients̃ak of the recursion relation
are positive for 0< k 6 n. It follows from proposition 2.1 that the coefficientsωk of
the corresponding moment functionalL are positive for allk = 0, . . . , n, i.e.,L is positive
semidefinite.

Before concluding this section, let us emphasize that the Razavy Hamiltonian admits two
different gauged forms,̂Hg andH̃g, nonequivalent under the action of the projective group on
the enveloping algebra of the generators (2.8) [9]. This does not contradict the fact thatĤg
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andH̃g are equivalent under a change of variable and a gauge transformation (since they are
both equivalent to the Razavy Hamiltonian). Indeed, the transformation relatingĤg andH̃g,

Ĥg(ẑ) =
(
µ̃(z̃)

µ̂(ẑ)

)
H̃g(z̃)

(
µ̃(z̃)

µ̂(ẑ)

)−1 ∣∣∣∣
ẑ= 1

2 (z̃+z̃
−1)

is certainlynotprojective.

3. The trigonometric Razavy potential

3.1. The orthogonal polynomial families

We shall study in this section thetrigonometric Razavy potential

U(x) = −(ζ cos 2x −M)2 (3.1)

which can be obtained from the hyperbolic Razavy potential (1.1) applying the anti-isospectral
transformationx 7→ ix, E 7→ −E. In other words,ψ(x) is a solution of the differential
equation

[−∂2
x + V (x)]ψ(x) = Eψ(x) (3.2)

if and only if

φ(x) = ψ(ix) (3.3)

is a solution of

[−∂2
x +U(x)]φ(x) = −Eφ(x). (3.4)

Just as in the hyperbolic case, we see by inspection that the trigonometric Razavy potential
can be expressed as an algebraic QES potential in two different ways. Indeed, the potential
(3.1) is a particular case of two entries in the table of periodic one-dimensional QES potentials
given in [10]: case 4,

U(x) = A sin2√νx +B sin
√
νx +C tan

√
νx sec

√
νx +D sec2

√
νx (3.5)

for

ν = 4 A = −ζ 2 B = 2Mζ C = D = 0 (3.6)

(after performing the translationx 7→ x − π/4; notice that one-dimensional QES potentials
were classified in [10] only up to an arbitrary translation), and case 5,

U(x) = A cos 4
√
νx +B cos 2

√
νx +C sin 2

√
νx +D sin 4

√
νx (3.7)

with

ν = 1 A = −ζ
2

2
B = 2Mζ C = D = 0. (3.8)

The four parametersA,B,C,D appearing in the table of periodic QES potentials of [10] are
not independent, but must satisfy a single algebraic constraint; it can be verified that the choices
of parameters (3.6) and (3.8) do indeed satisfy this constraint. Let us also note at this point
that, although the representation (3.5), (3.6) was known to Turbiner [8] and Shifman [18], the
second representation appears to be new.

Let us now construct the systems of weakly orthogonal polynomials associated to the
representations (3.5) and (3.7) of the trigonometric Razavy potential as a QES potential.

Consider, in the first place, the representation (3.5). Instead of proceeding directly, along
the lines sketched in the previous section for the hyperbolic case, we shall exploit the fact
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that the trigonometric and the hyperbolic Razavy potentials are related by the anti-isospectral
transformation (3.2)–(3.4). We saw in the previous section (equation (2.9)) that

−∂2
x + V (x) = µ̂(z) · Ĥg(z) · 1

µ̂(z)

∣∣∣∣
z=cosh 2x

.

Performing the change of independent variablex 7→ ix we obtain

∂2
x + V (ix) = µ̂(z) · Ĥg(z) · 1

µ̂(z)

∣∣∣∣
z=cos 2x

or, equivalently,

−∂2
x +U(x) = −µ̂(z) · Ĥg(z) · 1

µ̂(z)

∣∣∣∣
z=cos 2x

.

Thus, the gauge Hamiltonian̂H per
g associated to the potentialU(x) in this case is simply

Ĥ per
g (z) = −Ĥg(z). (3.9)

Since (cf [12], equation (41)) the coefficientsak and bk defining through equation (2.12)
the orthogonal polynomial system associated to a QES potential are, respectively, quadratic
and linear in the gauge Hamiltonian, it follows that the recurrence relation satisfied by the
orthogonal polynomial system{P̂ per

k (E)}∞k=0 associated to the representation (3.5), (3.6) is

P̂
per
k+1(E) = (E + bk)P̂

per
k (E)− akP̂ per

k−1(E) k > 0.

Comparing with (2.12) we immediately obtain the relation

P̂
per
k (E) = (−1)kP̂k(−E) k > 0. (3.10)

It can be easily verified through a routine calculation similar to the one performed in the previous
section that the general procedure described in [12] to construct the orthogonal polynomial
system associated to a QES potential, when applied to the representation (3.5) of the potential
(3.1), does indeed yield the result (3.10).

Let us now turn to the representation (3.7). We cannot directly apply the previous reasoning
in this case, since the composition of the change of coordinatez = e2x with the anti-isospectral
mappingx 7→ ix leads to the complex change of variablez = e2ix , while the correct one for
this case is (cf [10])

z = tanx. (3.11)

It is therefore easier to apply, as in the previous section, the general procedure described
in [12]. Using the techniques explained in [9], we readily find the following expression for
the coefficientsA,B,C,D in (3.7) in terms of four independent parametersb̂, ĉ, d̂ ∈ R and
n ∈ N ∪ {0}:

A = 1

32ν
(b̂ − ĉ − d̂)(b̂ + ĉ − d̂) B = 1

8ν
[d̂2 − b̂2 + 4νĉ(n + 1)]

C = 1

8ν
[ĉ(b̂ + d̂) + 4ν(b̂ − d̂)(n + 1)] D = ĉ

16ν
(d̂ − b̂).

(3.12)

Comparing (3.8) with (3.12) we readily obtain

b̂ = d̂ = 0 ĉ = 4ζ n = M − 1. (3.13)

From (3.13) it follows (cf [9]) that the change of variable (3.11) and the gauge transformation
determined by

µ̃per(z) = (z2 + 1)
1−M

2 e−
ζ

z2+1 (3.14)



Orthogonal polynomials and the Razavy potential 6831

map the trigonometric Razavy Hamiltonian into the gauge Hamiltonian

H̃ per
g (z) = −[J 2

+ + 2J 2
0 + J 2

− + 4ζ J0 + 1
2(M

2 + 2ζ 2 + 1)] (3.15)

in the sense that

−∂2
x +U(x) = µ̃per(z) · H̃ per

g (z) · 1

µ̃per(z)

∣∣∣∣
z=tanx

. (3.16)

As in the previous section, the differential operatorsJε (ε = 0,±) appearing in (3.15) are
defined by (2.8), withn = M − 1. The orthogonal polynomial system{P̃ per

k (E)}∞k=0 for this
case is generated by expanding an arbitrary solutionχ̃

per
E (z) of the gauged equation

[H̃ per
g (z)− E]χ̃per

E (z) = 0 (3.17)

in the formal power series (cf [12], equations (29) and (40))

χ̃
per
E (z) = (z + i)M−1

∞∑
k=0

(−1)k

(2ζ )kk!
P̃

per
k (E)

(
z− i

z + i

)k
. (3.18)

From (3.16) and (3.17) it follows that

ψ̃
per
E (x) = µ̃per(z)χ̃

per
E (z)|z=tanx (3.19)

is a formal solution of the Schrödinger equation

[−∂2
x +U(x)]ψ̃per

E (x) = Eψ̃per
E (x). (3.20)

Applying the change of variablesx 7→ −ix we deduce that̃ψper
−E(−ix) satisfies the dual

equation

[−∂2
x + V (x)]ψ̃per

−E(−ix) = Eψ̃per
−E(−ix). (3.21)

On the other hand, a direct calculation shows that

ψ̃
per
−E(−ix) = iM−1e−

ζ

2 µ̃(z)

∞∑
k=0

P̃
per
k (−E)
(2ζ )kk!

zk
∣∣∣∣
z=e2x

(3.22)

whereµ̃(z) is defined by (2.21). From (3.21) and (3.22) it follows that the formal power series
∞∑
k=0

P̃
per
k (−E)
(2ζ )kk!

zk (3.23)

must be proportional to the functioñχE(z) generating the orthogonal polynomial system
associated to the representation (2.18), (2.19) of the hyperbolic Razavy potential as an algebraic
QES potential (see equation (2.23)). Since both power series (3.23) and (2.23) have constant
term equal to one, they must be equal. Equating their coefficients we obtain the relation

P̃
per
k (E) = (−1)kP̃k(−E) k > 0. (3.24)

3.2. The band spectrum

The results of the previous subsection imply that, as in the hyperbolic case, the trigonometric
Razavy potential is algebraically QES whenM ∈ N (see, for instance, equation (3.13)). We
shall see in this subsection how this fact can be used to exactly compute a certain number of
gaps in the band energy spectrum of the potential (3.1), and shall furthermore determine the
location of these gaps in the spectrum.

We start by briefly recalling certain well known facts about the energy spectrum of a
Schr̈odinger operator

H = −∂2
x +U(x) (3.25)
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whereU is a continuous periodic function of perioda > 0:

U(x) = U(x + a) ∀x ∈ R. (3.26)

A real numberE belongs to the spectrum ofH if the differential equation

(H − E)ψ = 0 (3.27)

has a bounded nonzero solutionψ(x). It can be shown [23,24] that the spectrum of the operator
(3.25), (3.26) is the union of an infinite number of closed intervals (energy bands) [E0, Ē1],
[Ē2, E1], [E2, Ē3], . . . , where

E0 < Ē1 6 Ē2 < E1 6 E2 < Ē3 6 Ē4 < · · ·
and

lim
k→∞

Ek = lim
k→∞

Ēk = +∞.
Thegapsin the energy spectrum are thus the (possibly empty) open intervals

(Ē1, Ē2), (E1, E2), . . . , (Ēk, Ēk+1), (Ek, Ek+1), . . . k = 1, 2, . . . .

The numbersEk (k = 0, 1, 2, . . .) are characterized by the existence of a nonzeroa-periodic
solutionψk of the differential equation (3.27) forE = Ek. The latter condition is clearly
equivalent toψk being a nonzero solution of the Sturm–Liouville problem with periodic
boundary conditions

(H − E)ψ(x) = 0 0< x < a

ψ(0) = ψ(a) ψ ′(0) = ψ ′(a) (3.28)

with eigenvalueE = Ek. Note thatEk = Ek+1 if and only if (3.28) has two linearly independent
solutions. Likewise, the numbers̄Ek (k = 1, 2, . . .) are characterized by the fact that the
differential equation (3.27) withE = Ēk possesses a nonzero anti-periodic (2a-periodic)
solutionψ̄k, that is, a solution̄ψk such that

ψ̄k(x + a) = −ψ̄k(x) ∀x ∈ R.
Equivalently,ψ̄k is a solution of the Sturm–Liouville problem

(H − E)ψ(x) = 0 0< x < a

ψ(0) = −ψ(a) ψ ′(0) = −ψ ′(a) (3.29)

with eigenvalueE = Ēk. Finally, it is shown in [25] that fork = 0, 1, 2, . . . the eigenfunction
ψk has exactlyk + π(k) zeros in the interval [0, a), where

π(k) = 1
2[1 + (−1)k+1]

is the parity ofk. A straightforward adaptation of Ince’s proof shows thatψ̄k has exactly
k + π(k)− 1 zeros in [0, a), where nowk = 1, 2, . . . .

Let us now turn to the trigonometric Razavy potential (3.1), which we know from the
previous discussion to be algebraically QES forM ∈ N. For convenience, we shall use in what
follows the representation (3.7), (3.8) of the trigonometric Razavy potential as an algebraic
QES potential. From (3.24) it follows that the polynomialsP̃ per

k (E) satisfy the recurrence
relation

P̃
per
k+1(E) = (E + bk)P̃

per
k (E)− akP̃ per

k−1(E) k > 0

where the coefficientsak andbk are given by (2.24) withn = M − 1. In particular, the
coefficientaM vanishes identically, which in turn implies that ifεj is a root of the polynomial
P̃

per
M (E) then the series (3.18) truncates atk = M−1, and therefore the functioñψper

εj (x) given
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by (3.19) is a regular, bounded solution of the Schrödinger equation (3.20). Since it can be
shown [12] that the polynomial̃P per

M has exactlyM different real roots, we can algebraically
computeM solutions of the Schrödinger equation (3.20) of the form (cf equations (3.14),
(3.18), and (3.19))

ψ̃per
εj
(x) = e−

ζ

2 cos 2x−i(M−1)xϕj (e
2ix) 16 j 6 M (3.30)

whereεj is any of the roots of̃P per
M (E) andϕj is a polynomial of degree at mostM − 1. From

the latter equation we find that

ψ̃per
εj
(x + π) = (−1)M−1ψ̃per

εj
(x) (3.31)

and therefore theM algebraically computable solutions (3.30) areπ -periodic forM odd,
and anti-periodic forM even. Furthermore, from (3.30) it also follows that each of the
M algebraic eigenfunctions̃ψper

εj has at mostM − 1 roots in the interval [0, π). Thus
for M even the algebraic eigenfunctions (3.30) coincide with theM lowest anti-periodic
eigenfunctionsψ̄k(x) (k = 1, . . . ,M), and the algebraically computable energies—the zeros
εj of the critical polynomialP̃ per

M (E)—are the lowestM ‘anti-periodic’ energies̄E1, . . . , ĒM .
Likewise, forM odd the algebraic eigenfunctions are the lowestM periodic eigenfunctions
ψk(x) (k = 1, . . . ,M), and the corresponding algebraic energies are theM lowest ‘periodic’
energiesE0, . . . , EM−1. Since the gaps in the energy spectrum of a periodic Hamiltonian
are limited by two energies of thesametype (periodic or anti-periodic), this means that the
knowledge of the algebraic energies allows us to exactly compute a certain number of gaps
in the spectrum. More precisely, whenM is even then we can algebraically compute the first
M/2 anti-periodic gaps(Ē1, Ē2), (Ē3, Ē4), . . . , (ĒM−1, ĒM) in the energy spectrum of the
trigonometric the Razavy Hamiltonian or, equivalently, the firstM/2 odd gaps. Similarly,
whenM is odd then the algebraically computable energies are the ground stateE0 and the
first (M−1)/2= [M/2] periodic gaps(E1, E2), (E3, E4), . . . , (EM−2, EM−1) or, what is the
same, the ground state and the first [M/2] evengaps in the energy spectrum. In particular,
forM even we can algebraically compute thefirst gap(Ē1, Ē2) in the energy spectrum of the
trigonometric Razavy Hamiltonian, while forM odd we can always compute the ground state
E0. Note also that, since the algebraically computable gaps are never consecutive, we cannot
exactly compute any of the allowed energy bands. Figure 2 shows the first five allowed energy
bands for the trigonometric Razavy potential as a function of the parameterζ for M = 5.

The differential equation (3.27) with the potential (3.1) is well known in the theory of
periodic differential equations under the name ofWhittaker–Hill’s equation, or Hill’s three-
term equation, [26, 27]. It is of interest in the latter context mainly because, unlike the much
better known Mathieu’s equation, for certain values of the spectral parameterE it admits
so-calledfinite solutions, i.e., solutions of the form

ψ(x) = e−
ζ

2 cos 2xϕ(x)

whereϕ(x) is a trigonometric polynomial. It follows from equation (3.30) that the algebraic
eigenfunctions obtained in this section are finite solutions. In fact, the converse also holds,
namelyall finite solutions are algebraic eigenfunctions. This follows at once from theorem 7.9
of [27], which states (in our notation) that for eachM ∈ N the Whittaker–Hill equation has
at most [M/2] gaps of periodic (ifM is odd) or anti-periodic (ifM is even) type. For even
M, we have shown that there are exactlyM anti-periodic algebraic eigenfunctions, whose
correspondingM eigenvalues defineexactlyM/2 gaps of anti-periodic type. Since, for these
values ofM, there are also exactlyM anti-periodic finite solutions and eigenvalues [26], it
follows from the theorem quoted above that the finite solutions coincide (up to a constant
factor) with the algebraic eigenfunctions. A similar argument is valid whenM is odd.
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Figure 2. Allowed energy bands (in grey) for the potential (3.1) withM = 5 as a function ofζ .
The solid boundary curves correspond to the algebraically computable (periodic) energies, while
the grey boundary curves have been obtained numerically.

In order to compare our findings with the classical theory, it is more convenient to use the
representation (3.5), (3.6). Applying the anti-isospectral transformation to equations (2.7) and
(2.11) of section 2, it follows that the algebraic (unnormalized) eigenfunctions can be classified
as follows:
M even:

ψ(x) = e−
ζ

2 cos 2x

M
2 −1∑
k=0

P̂ 0+
k (−E)
(2k + 1)!

cos2k+1 x (3.32)

ψ(x) = e−
ζ

2 cos 2x sinx

M
2 −1∑
k=0

P̂ 0−
k (−E)
(2k)!

cos2k x (3.33)

M odd:

ψ(x) = e−
ζ

2 cos 2x

M−1
2∑

k=0

P̂ +0
k (−E)
(2k)!

cos2k x (3.34)

ψ(x) = e−
ζ

2 cos 2x sinx

M−3
2∑

k=0

P̂−0
k (−E)
(2k + 1)!

cos2k+1 x. (3.35)

In the above formulae, the polynomialŝPσηk are defined by the recursion relation (2.12),
(2.13), andE is one of the algebraically computable energies, i.e.,−E is a root of the critical
polynomialsP̂ 0+

M/2, P̂ 0−
M/2, P̂ +0

(M+1)/2, andP̂−0
(M−1)/2, respectively. Comparing with the formulae

in section 7.4.1 of [26] we easily find that, ifψ(x) is an algebraic eigenfunction of one of the
four types (3.32)–(3.35), then e

ζ

2 cos 2xψ(x) is proportional, respectively, to theInce polynomial
C2k+1
M−1, S2k+1

M−1,C2k
M−1, andS2k

M−1, where (in the notation of Ince, cf [26])E = a2k+1
M−1, b2k+1

M−1, a2k
M−1,

or b2k
M−1, respectively.
The results of this section can therefore be interpreted as providing a deep Lie-algebraic

justification for the exceptional fact that the Whittaker–Hill equation admits finite solutions.
This observation is further corroborated by the fact that other periodic Schrödinger equations
known to have finite solutions (in a slightly more general sense) as, for instance, the Lamé
equation, are also algebraically QES [6, 10, 28, 29]. The above results underscore the close
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connection between the existence of finite solutions of Hill’s equation, on the one hand, and
the algebraic QES character of its potential, on the other. This remarkable connection certainly
deserves further investigation.
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[9] Gonźalez-Ĺopez A, Kamran N and Olver P J 1993Commun. Math. Phys.153117–46
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