lopscience = [lopscienceioporg

Home Search Collections Journals About Contactus My IOPscience

On the families of orthogonal polynomials associated to the Razavy potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 32 6821
(http://iopscience.iop.org/0305-4470/32/39/308)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.111
The article was downloaded on 02/06/2010 at 07:45

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/39
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. GerB2 (1999) 6821-6835. Printed in the UK PIl: S0305-4470(99)04278-X

On the families of orthogonal polynomials associated to the
Razavy potential

Federico Finkelt§, Artemio Goalez-Lopezt and Miguel A Rodiguez®

T Department of Mathematics, Imperial College, London SW7 2BZ, UK
¥ Departamento deisica Teérica Il, Universidad Complutense de Madrid, 28040 Madrid, Spain

Received 12 May 1999

Abstract. We show that there are two different families of (weakly) orthogonal polynomials
associated to the quasi-exactly solvable Razavy poteWitia) = (z coshz — M)2 (¢ > O,

M e N). One of these families encompasses the four sets of orthogonal polynomials recently
found by Khare and Mandal, while the other one is new. These results are extended to the related
periodic potential/ (x) = —(¢ cos 2 — M)?, for which we also construct two different families

of weakly orthogonal polynomials. We prove that either of these two families yields the ground
state (whenM is odd) and the lowest-lying gaps in the energy spectrum of the latter periodic
potential up to and including the@/ — 1)th gap and having the same parity/ds— 1. Moreover,

we show that the algebraic eigenfunctions obtained in this way are the well known finite solutions
of the Whittaker—Hill (or Hill's three-term) periodic differential equation. Thus, the foregoing
results provide a Lie-algebraic justification of the fact that the Whittaker—Hill equation (unlike, for
instance, Mathieu’s equation) admits finite solutions.

1. Introduction

The one-dimensional quantum mechanical potential
V(x) = (¢ cosh& — M)? (1.1)

where¢ andM are positive real parameters, was first studied by Razavy [1]Mer ¢, the

above potential (which we shall henceforth refer to asRhagavy potentidlis a symmetric
double well. This type of potential has been extensively used in the quantum theory of
molecules as an approximate description of the motion of a particle under two centres of
force. In particular, the Razavy potential has been proposed by several authors as a realistic
model of a proton in a hydrogen bond [2-5]. The potential (1.1) has also been recently used
by Ulyanov and Zaslavskii [6], as an effective potential for a uniaxial paramagnet.

Razavy showed that wheM is a positive integer the lowest/ energy levels of the
potential (1.1) (with their corresponding eigenfunctions) can be exactly computed in closed
form. The Razavy potential is thus an example qfiasi-exactly solvabl@QES) potential, for
which part (but not necessarily all) of the spectrum can be computed exactly. A very important
class of QES potentials, that we shall calljebraicin what followsg|, are characterized by

§ On leave of absence from Departamento teck Térica Il, Universidad Complutense de Madrid, Spain.

|I There is, unfortunately, no clear consensus in the literature regarding this terminology. The term ‘quasi-exactly
solvable potential’ is, we believe, originally due to Turbiner and Ushveridze [7], who used it to refer to what we have
just calledalgebraicQES potentials. However, in the last couple of years there has been a growing tendency to use
the adjective ‘quasi-exactly solvable’ for any potential, be it algebraic or not, part of whose spectrum can be exactly
computed. We have preferred in this paper to adhere to this increasingly common usage to avoid confusion.
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the fact that the corresponding quantum Hamiltonian is an element of the enveloping algebra
of a finite-dimensional Lie algebra of differential operators (the so-cdlidden symmetry
algebrg admitting a finite-dimensional invariant module of smooth functions. That such a
potential is QES follows immediately from the fact that the finite-dimensional module of the
hidden symmetry algebra is obviously left invariant by its enveloping algebra, and in particular
by the Hamiltonian. Therefore, a number of energy eigenvalues and eigenfunctions equal to
the dimension of the invariant module can be computed algebraically, by diagonalizing the
finite-dimensional matrix of the restriction of the Hamiltonian to the module.

One-dimensional algebraic QES potentials were studied as such for the first time by
Turbiner [8], who used as hidden symmetry algebra a realizatief(®fR) in terms of first-
order differential operators. These potentials were then completely classified bal&nnz
Lopezetal[9,10]. There are exactly ten families of one-dimensional algebraic QES potentials,
five of which are periodic and the remaining five all have point spectrum. In all cases, the
hidden symmetry algebra is agaifi2, R).

Recently, Bender and Dunne [11] associated a family of (weakly) orthogonal polynomials
to the class of algebraic QES potentials given by
(4s —1)(4s — 3)

4x2
This construction was immediately extended by the authors of this paper to virtually all
one-dimensionadlgebraic QES potentials in [12]. Krajewskat al [13] proved that a set
of weakly orthogonal polynomials can be constructed explicitly for any (not necessarily
algebraic) QES Hamiltonian tridiagonalizable irkaownbasis. Khare and Mandal have
constructed two families of non-orthogonal polynomials associated to a pair of non-algebraic
QES potentials [14]f. It is important to note that the family of polynomials associated to a
given Hamiltonian is not unique, but depends on the type of formal expansion defining the
polynomials. It is therefore conceivable that one could obtain orthogonal polynomials in the
examples studied in [14] by considering different expansions.

The Razavy potential has been recently revisited by Khare and Mandal [15] and Konwent
et al[16]. The former authors, who were mainly interested in the properties of the associated
polynomial system, introduced four different sets of polynomi&S(E)}:° , and{ Q5. (E)}32,

(e =0, 1) for the Razavy potential (1.1) through the formulae

00 € k
Ye(x) = e*%Z(Z —1)</? Z P (E) <ﬂ.)
k=0

Vi(x) = —2(2s+2J — Dx2+x5 seR JeN.

(2k)! 2
and
. e} QG(E) Z+1 k+%
_ e 3%(s _ 1\€/2 k > =
Ve =e -1 ;(21”1)!( 2)
where

z=coshz (1.2)
andy ¢ denotes a formal (i.e., not necessarily square-integrable) eigenfunction of
H = —3?+ (¢ cosh2 — M)?
Tt Some of the formulae for the polynomials associated to these potentials contain errata. Indeed, the change of variable

(8) should read = (y +¢2)%/2, and the factor multiplying in the coefficient ofQ, (s) in the recursion relation (11)
should be:2(4s + 1), this affecting formulae (12) and (13). Likewise, in formula (21) the termb +c — %)2 should

be(a+b+c+nfg)2.
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with eigenvalueE and parityt(—1)¢. Without loss of generality, we shall choose the usual
normalization

P5(E) = Qg(E) = 1.

Imposing that(tH — E)yx(x) = 0 one easily shows that each of the four JRS(E)}2,
and{ Q5 (E)}2, (e = 0, 1) satisfies a three-term recurrence relation of the appropriate form
(see (2.12) and [17]), and therefore forms an orthogonal polynomial system with respect to a
suitable Stieltjes measure.

We thus have four seemingly unrelated sets of orthogonal polynomials associated to the
Razavy potential (1.1). This is surprising, since in all the previous examples only one set
of orthogonal polynomials was constructed for each QES potential considered. One of the
objectives of this paper is precisely to explain how these four sets of orthogonal polynomials
arise. The key to this explanation is the fact (not taken into account in [15]) that the Razavy
potential is not just QES, butlgebraic More precisely, we shall show in section 2 that the
Razavy potential can be written as a polynomial in the generators of a suitable realization of
5[(2, R) in two different ways. Using the constructive method explained in [12], these two
different realizations of the Razavy potential as an algebraic QES potential give rise to two
different families of orthogonal polynomials. One of these two families encompasses in a
natural way the four sets of orthogonal polynomials of Khare and Mandal’s. In fact, all the
properties of these four sets found in [15] (weak orthogonality, factorization, etc) are immediate
consequences of the general properties of the system of orthogonal polynomials associated to
an algebraic QES potential developed in our previous paper [12]. The second realization of
(1.1) as an algebraic QES potential yields yet another set of orthogonal polynomials different
from the four sets found by Khare and Mandal. The properties of this family, which again
follow from the general theory developed in [12], are in many respects simpler than those
of the first family. For example, the moment functional associated to the second family is
positive semidefinite, while this is not the case for the first family. All of these facts make, in
our opinion, the second family more practically convenient for finding the exactly computable
energy levels of the Razavy potential.

In section 3 we study the trigonometric version of the Razavy potential, given by

U(x) = —( cosZ — M) (1.3)

This potential, which is a simple model for a one-dimensional periodic lattice, appears
in Turbiner's list of QES one-dimensional potentials, [8], and was also touched upon by
Shifman [18] (in the particular case in whigH is an odd positive integer). Ulyanov and
Zaslavskii [6], have related the trigonometric Razavy potential (1.3) to a quantum spin system.
The potential (1.3) has also recently appeared as the coupling term between the inflaton field
and matter scalar fields in theories of cosmological reheating after inflation with a displaced
harmonic inflation potential [19].

The trigonometric Razavy potential (1.3) is the image of the hyperbolic Razavy potential
(1.1) under the anti-isospectral transformatiom> ix, E — —E, recently considered by
Krajewskaet al [20]. It is therefore to be expected that the properties of the polynomials
associated to this potential are analogous to the corresponding properties for the hyperbolic
Razavy potential (1.1). That this is indeed the case is shown in section 3, where we prove
that the potential (1.3) can be realized in two different ways as an algebraic QES potential.
As in the hyperbolic case, each of these two different realizations gives rise to a family of
orthogonal polynomials. For each positive integer valu&adf is possible to exactly compute
M eigenfunctions (with their corresponding energies) of the trigonometric Razavy potential by

T Where(z — 1)¥/2 should of course be interpreted @2 sinhx.
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M=4

M=5 e —, e Gy— .

Figure 1. Structure of the energy spectrum of the potential (1.3)Mbr= 4 and 5. The thick
horizontal segments represent the allowed energy bands. The solid circles stand for the algebraically
computable energies, which determine the gaps represented by thin solid lines. The remaining
boundaries of the allowed bands, and hence the energy gaps shown as dotted lines, cannot be
exactly computed.

purely algebraic procedures. It was previously known on general grounds [18] that the energies
of theseM eigenfunctions must be boundary points of allowed bands (or, equivalently, gaps)
in the energy spectrum of the periodic potential (1.3). In section 3 we investigate the exact
position of these boundary points in the spectrum of (1.3). We show that, if the gaps in the
energy spectrum are numbered consecutively in order of increasing energy, these points yield
precisely the ground state (whe is odd) and the Iowest%t] gapst of the same parity as

M — 1. For instance, if¥ = 4 we obtain the first (lowest) and the third gap, whereas for

M = 5 we get the ground state and the second and fourth lowest gaps (see figure 1).

The paper ends with a discussion of the above results in the context of the classical theory
of Hill's equation. We show that the algebraic eigenfunctions constructed in this paper are
precisely the so-called finite solutions of the Whittaker—Hill (or Hill's three-term) equation.

In fact, our analysis provides a Lie-algebraic explanation of why the Whittaker—Hill equation
admits finite solutions at all. Indeed, from our point of view this is just a simple consequence
of the fact that the Scibdinger operator with potential (1.3) is algebraically QES.

2. The hyperbolic Razavy potential

We shall show in this section that the hyperbolic Razavy potential (1.1) can be expressed in
two different ways as an algebraic QES potential. From these two representations we shall
derive two different families of associated orthogonal polynomials, whose properties we shall
discuss.

Consider, in the first place, the second non-periodic algebraic QES potential listed in [10]
(p 127), given by

V(x) = A costf v/vx + B coshy/vx + C cothy/vx cschy/vx + D cschf /vx (2.1)

where the coefficientd, B, C, D can be expressed in terms of four parameﬁefs deR
andn € N U {0} as follows (see [9], equation (5.11)):

b2 b . b+d
A=— B=_—[c+@n+1yv] C =
4y 2v

D= i[(13+&)2+ (& — (n+ D)2 =12,
4v

oy L= (n+ D] 2.2)

The hyperbolic Razavy potential is of the form (2.1) (up to an inessential additive constant)
provided that

v=4 C=D=0 A =2 B = —2M¢.
Using equation (2.2) we obtain the following system in the paramétets andn:
h? = 162 (2.3)

T We denote byJ] the integer part of the real number
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Table 1. Values ofd and M corresponding to the four solutions of equations (2.3)—(2.6).

d M o

n
4 2n+1 1 0
a 2%+3 -1 0
4¢-1) 2n+2 O 1
4+ 2n+2 O -1
b[é + 4(n +1)] = —16M¢ (2.4)
(b+d)[¢—4n+1]=0 (2.5)
(b+d)?+[¢ —4n+ 1)) =16 (2.6)

From equations (2.3) and (2.4) and the normalizability conditon< 0 (see [9],
equation (5.14)), we get

bh=—4 é=4M —n-—1).

Substituting these into the remaining conditions (2.5) and (2.6) we are led to four different
solutions ford and M, which may be written in a unified way as

M=2n+1)—0  ¢é=4n+l-0) d=4—n)
where the parametessandn are given in table 1.
It follows from the general discussion in [9] that the change of variable (1.2) and the gauge
transformation determined by
AR) = = DT+ it oe 2 2.7)

map the Razavy Hamiltonian into an operafly (the gauge Hamiltoniaphbelonging to the
enveloping algebra of the realization€t2, R) spanned byt

J =9,  Jo=2z0.— g Jo = 220, — nz. (2.8)
Indeed,
Ag(z) = = -[-92+ (L cosh & — M)?] - [u(2)
n(z) x=3 arccosh
=4 -2 =+ (n+l-0)o+ (@ —n)J) —c. (2.9)
where

¢ = =3n+1%?+2(n+ 1o +2n; — 2.
According to the general prescription of [12], the formal solutions of the gauged equation
(Hy— E)3p =0 (2.10)

are generating functions for a set of orthogonal polynomials. More explicitly, inserting the
expansion

NN P (E) k
e = ; Pk Ot Y (2.12)

T The operatord, (¢ = %, 0) (and any polynomial thereof) preserve the spBgef polynomials inz of degree
at mostn. Moreover, anyth-order differential operatok(< n) preservingP, may be expressed askth-degree
polynomial in the generators,, [21, 22].
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into (2.10), we readily find that the coefficients(E) satisfy the three-term recursion relation
Pisa(E) = (E =) P(E) —ax P 1(E) k>0 (2.12)
where

ay = 16¢k(2k — o +n)(k —n — 1) (2.13)
b= —4k(k+1—0 +20)+@n+ DR —0) +3) + (& — 2+ 4n).

If we impose the conditiorﬁo(E) = 1, the coefficients{ﬁk(E)},iio form a set of weakly
orthogonal (monic) polynomials. Therefore, we can construct two sets of weakly orthogonal
polynomials for each value @ by choosing suitable values for, n andn (for M = 1 there

is only one set). These two sets coincide exactly with the{gét‘sf(E)},f‘;O and{Qy(E)}X,

(with € = 0 for M even anc = 1 for M odd) studied by Khare and Mandal in [15]. From
now on, we shall use when necessary the more precise noi%ﬁfbto denote the orthogonal
polynomials defined by equations (2.12), (2.13). For instandé,# 4 we have: = 1,0 =0

andn = £1 (see table 1). When = 1 the first three polynomials are

POME) =1
POYE)=E —¢? -2 —15 (2.14)
POYE) = E? — 2(¢2 — 2¢ + 1D)E + ¢* — 4.8+ 10¢2 — 28 + 105

whereas forn = —1 we obtain

PO(E)=1
PY(E)y=E—-¢?>-6;—-15 (2.15)
PY(E) = E?2 —2(¢2+ 20 + 1) E + 4 + 428 + 10¢2 + 2& + 105

The polynomials (2.14) and (2.15) reduce, respectively, to the polyno@f&E) and PL(E)
(k=0,1, 2) in formulae (2.18) and (2.17) of [15].
The coefficienta; given by (2.13) vanishes for = n + 1, and therefore®,(E) with
k > n + 1 factorize asP,1+j(E) = Q;(E)Psa(E), j > 0, where{Q;}; also form a set of
(monic) orthogonal polynomials. [E; is a root of the polynomiaP,.1(E) the series (2.11)
truncates at = n, and thusE; belongs to the point spectrum of the Razavy Hamiltonian. For
example, ifM = 4, the rootsEy, E; of ﬁzo"(E) are the energies of the ground state and the
second excited state of the Razavy potential, while the rBgt&; of ﬁz(’*(E) correspond to
the first and third excited levels. The rest of the spectrum cannot be computed algebraically.
The other usual properties which characterize weak orthogonality—vanishing norms,
finite support of the Stielties measure associated to the polynomials, etc [11-13]—are also
satisfied by the polynomia{sak(E)},f‘;o. In particular, ifE, (k =0, ..., n) are the (different)
roots 0fﬁn+1(E), the moment functional associated to the polynomials is

L= od(E - Ey) (2.16)
k=0
where the coefficients, are determined by
Zﬁl(Ek)wk=510 [=0,...,n.
k=0
It was observed in [15] that not all the coefficienig corresponding to the polynomial¥

andQyj, are positive. This is, in fact, a direct consequence of the following general property of
an orthogonal polynomial system satisfying a recursion relation of the form (2.12).
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Proposition 2.1. The coefficientsy, of the moment functional (2.16) are positive for all
k=0,...,nifand only ifa; > O0for 0 < k < nandby is real for0 < k < n.

Proof. The ‘if’ part was proved in [12]t. Lei, > Ofork = 0, ..., n. ThenZ(p?) > 0 for
any non-vanishing real polynomial of degree at mastt follows that £ is positive definite
in Py, = {P € C[E] : degP < 2n}, forif P € Py, is a nonzero real polynomial which is
non-negative for alE € R, thenP = p? + ¢2 for real polynomialsp andqg in P,, and thus
L(P) > 0. SinceL is positive definite ifP,,, the momentg, = L(E¥) withk =0, ...,2n
are positive for evet and real for odd, [17]. Multiplying the recursion relation (2.12) by
P, and applyingC we find that

L(EPZ) — b L(P?) =0. (2.17)
Taking k = 0, we conclude thaby = ©1/uo is real. ThereforeP, = E — bg isAreaI and
a, = E(Plz) > 0. By induction, ifb;_1 e Randa; > Oforj =1, ...,k < n, thenP, isreal,
and from (2.17) we deduce thiat € R. ThenPy.q is real, and

k+1

0< L(Ph) =]]a
j=1

implies thata;+1 > 0. O

Note that the coefficients, given by (2.13) are negative ford k < n and thereforev,
cannot be positive forak =0, ..., n.

Consider, in the second place, the third non-periodic algebraic QES potential given in [10]
(p 127), namely

V(x) = A2V + BeV + Ce V' + e 2V (2.18)

where the coefficientsA, B, C, D can again be expressed in terms of four parameters
b,¢,d € Randn € NU {0} as (see [9], equation (5.11)):
A—A2 B—];[A+( + ] C—&[A (n+Dyv] D—C22 (2.19)

T TtV Y TV Y T 4y '

The potential (2.18) reduces to the hyperbolic Razavy potential (1.1) (up to an additive constant)
provided that

;2
v=4 A=D=> B=C=—IM.

Taking into account the normalizability conditiohs< 0 andd > 0, (see [9], equations (5.24)
and (5.25)), we get the unique solution

bh=-2¢ é=0 d=2¢ M=n+1

In this case, the change of variable

7=€" (2.20)
and the gauge transformation generated by
fi(z)=z7 e @D (2.21)

T Note that the proof only requirég to be real for 0< k < n.
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map the Razavy Hamiltonian into a differential opera‘ﬁgrquadratic in the generators (2.8),
namely

Hy(z) = —4J¢+ 200, — 200 — ¢, (2.22)
where
Go=—(+ 1% -2

Following the general treatment of [12], if we insert the expansion

N E (—DFP(E)
XE@) =) ——F—"2 (2.23)
£ ; (20 )*k!

into the spectral equation frﬁg, the coefficient?, (E) are easily found to satisfy a three-term
recursion relation of the form (2.12), with coefficients

ap = 4k(n +1—k)¢?

2.24
by =4k —k)+2n+1+¢2 (2.24)

Taking Po(E) = 1, we obtain yet another family of weakly orthogonal (monic) polynomials
{P(E)}2,, associated to the Razavy potential (1.1). For instanc#f i#= 4 the first five
polynomials are

Py(E) =1
P(E)=E—(%>-7
Py(E) = E? — 2(¢%+ 1D E +¢* + 102 + 105
P3(E) = E® — (3t + 37N E? + (3¢* + 4602 + 435 E — ¢ — 9¢% — 143%? — 1575
Py(E) = E* — 4% + 1D E® + 2(3¢* + 4602 + 34D E?
—A4(c8+ 134+ 1592+ 1155 E + ¢8 + 4¢°% + 86¢% + 13162 + 11025

(2.25)

Note that the polynomiaPs(E) is the product of the polynomialéz(”(E) and 1320*(E) given
in (2.14) and (2.15). Therefore, the algebraic levels can be also obtained as the the roots
Eo, ..., E3Of Py(E).

In general, if M is even the polynomialPy(E) factorizes into the product of the
polynomialsPy7,(E) associated tg = +1 (see table 1). Alternatively, it/ is odd, Py (E)

factorizes into the product of the polynomi:fl'gloﬂ)/2 associated te = +1. The algebraic

energy levels of the Razavy potential (1.1) can thus be computed in a unified way as the roots
of Py;. On the other hand, the algebraic eigenfunctions can be written as

YE(X) = 1@ X (@D |z=200)

wheren(z), x£(z) and the change of variable= z(x) are given by either (1.2), (2.7) and
(2.11), or (2.20), (2.21) and (2.23).

The polynomialg 2, 1%, verify the usual properties associated to their weak orthogonality.
However, unlike the previous familyP; )22, the coefficientsi, of the recursion relation
are positive for O< k < n. It follows from proposition 2.1 that the coefficients of
the corresponding moment functionalare positive for alk = O, ..., n, i.e., £ is positive
semidefinite.

Before concluding this section, let us emphasize that the Razavy Hamiltonian admits two
different gauged formslﬁlg andlflg, nonequivalent under the action of the projective group on
the enveloping algebra of the generators (2.8) [9]. This does not contradict the faétg,that
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and 1519 are equivalent under a change of variable and a gauge transformation (since they are
both equivalent to the Razavy Hamiltonian). Indeed, the transformation reldgingd H,

v (RO 5o (RO

Hy(?) = | —= ) A, 24

o0 (ﬁ(@) gw(ﬁ(%))
is certainlynot projective.

sl 1 zpie
i=3E+h

3. The trigonometric Razavy potential

3.1. The orthogonal polynomial families

We shall study in this section thBgonometric Razavy potential
U(x) = —(£ OS2 — M)? (3.2)

which can be obtained from the hyperbolic Razavy potential (1.1) applying the anti-isospectral
transformationx — ix, E — —E. In other words/(x) is a solution of the differential
equation

[—02+ V(@©)IY (x) = EY(x) (3.2)
if and only if

¢ (x) = Y (ix) (3.3)
is a solution of

[97 + U)]$(x) = —E(x). (3.4)

Just as in the hyperbolic case, we see by inspection that the trigonometric Razavy potential
can be expressed as an algebraic QES potential in two different ways. Indeed, the potential
(3.1) is a particular case of two entries in the table of periodic one-dimensional QES potentials
given in [10]: case 4,

U(x) = Asir? J/vx + Bsiny/vx + C tany/vx secy/vx + Dseé /vx  (3.5)
for

v=4 A=—(? B =2M¢ C=D=0 (3.6)

(after performing the translation — x — 7 /4; notice that one-dimensional QES potentials
were classified in [10] only up to an arbitrary translation), and case 5,

U(x) = Acos4/vx + Bcos2/vx + C sin 2/vx + Dsin4/vx (3.7)
with
;‘2
v=1l  A=-3 B = 2M¢ C=D=0. (3.8)

The four parameterg, B, C, D appearing in the table of periodic QES potentials of [10] are
notindependent, but must satisfy a single algebraic constraint; it can be verified that the choices
of parameters (3.6) and (3.8) do indeed satisfy this constraint. Let us also note at this point
that, although the representation (3.5), (3.6) was known to Turbiner [8] and Shifman [18], the
second representation appears to be new.

Let us now construct the systems of weakly orthogonal polynomials associated to the
representations (3.5) and (3.7) of the trigonometric Razavy potential as a QES potential.

Consider, in the first place, the representation (3.5). Instead of proceeding directly, along
the lines sketched in the previous section for the hyperbolic case, we shall exploit the fact
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that the trigonometric and the hyperbolic Razavy potentials are related by the anti-isospectral
transformation (3.2)—(3.4). We saw in the previous section (equation (2.9)) that

~ 1
—32+V(x) = fi(z) - Hy(2) - —— .
M(Z) z=cosh &

Performing the change of independent variable- ix we obtain

af + V(Ix) = ,EL(Z) . I:Ig(Z) '

1
1 (z)

7z=C0S X
or, equivalently,

~02+U(x) = —1(2) - Hy(2) -

l’:L(Z) Z=COSZC'
Thus, the gauge Hamiltoniaij *' associated to the potentiéll(x) in this case is simply
AP(2) = —Hy(2). (3.9)

Since (cf [12], equation (41)) the coefficienigs and b, defining through equation (2.12)
the orthogonal polynomial system associated to a QES potential are, respectively, quadratic
and linear in the gauge Hamiltonian, it follows that the recurrence relation satisfied by the

orthogonal polynomial syste Akpe'(E)},fio associated to the representation (3.5), (3.6) is
PIA(E) = (E +b) P(E) — ax PPY(E) k> 0.

Comparing with (2.12) we immediately obtain the relation
PI(E) = (~)*P(—E) k>0. (3.10)

It can be easily verified through aroutine calculation similar to the one performed inthe previous
section that the general procedure described in [12] to construct the orthogonal polynomial
system associated to a QES potential, when applied to the representation (3.5) of the potential
(3.1), does indeed yield the result (3.10).

Letus nowturnto the representation (3.7). We cannotdirectly apply the previous reasoning
in this case, since the composition of the change of coordinate® with the anti-isospectral
mappingx — ix leads to the complex change of variable- €2, while the correct one for
this case is (cf [10])

z = tanx. (3.12)

It is therefore easier to apply, as in the previous section, the general procedure described
in [12]. Using the techniques explained in [9], we readily find the following expression for
the coefficientsA, B, C, D in (3.7) in terms of four independent parametkrs, d € R and

n € NU{0}:

1 . ala o 1 . 4
A=—0b—-¢—dyb+¢—d) B = —[d? — b? + 4vé(n + 1)]
3121) 8v R (3_12)
C = —[éh+d)+av(b—d)n +1)] D=-"(-b).
8v 16v
Comparing (3.8) with (3.12) we readily obtain
b=d=0 =4 n=M-—1. (3.13)

From (3.13) it follows (cf [9]) that the change of variable (3.11) and the gauge transformation
determined by

iP(z) = (2+1) 7 e A (3.14)



Orthogonal polynomials and the Razavy potential 6831

map the trigonometric Razavy Hamiltonian into the gauge Hamiltonian
HE®(2) = —[JZ+ 205 + J2 + A Jo+ 5(M? + 267 + 1)] (3.15)
in the sense that

—0Z+ U () = iP(2) - HY*'(2) - (3.16)

[PeI(z) z=tanx.
As in the previous section, the differential operatdrge = 0, &) appearing in (3.15) are
defined by (2.8), wite = M — 1. The orthogonal polynomial systef#{*'(E)}2, for this
case is generated by expanding an arbitrary Sollﬁgﬁ(z) of the gauged equation

[A¥() — E]x;'(2) = 0 (3.17)
in the formal power series (cf [12], equations (29) and (40))

(@) = (z+iM 1 i 0 PP(E) <Z—_')k . (3.18)

— (20)k! 7+

From (3.16) and (3.17) it follows that

JEc(x) = AP X (@) |o=tans (3.19)
is a formal solution of the Sctidinger equation

[—97 + UMWY () = EYg (x). (3.20)

Applying the change of variables — —ix we deduce thawa( ix) satisfies the dual
equation

[—02+ V()PP S (—ix) = EPPS(—ix). (3.21)
On the other hand, a direct calculation shows that
Pper( E)
P (—ix) =i ez Z* 22
P =1 “()Z @ | e ©22

wherefi(z) is defined by (2.21). From (3.21) and (3.22) it follows that the formal power series

oo pper

> %zk (3.23)

k=0 :
must be proportional to the functiojg(z) generating the orthogonal polynomial system
associated to the representation (2.18), (2.19) of the hyperbolic Razavy potential as an algebraic
QES potential (see equation (2.23)). Since both power series (3.23) and (2.23) have constant
term equal to one, they must be equal. Equating their coefficients we obtain the relation

PP(E) = (D'B(-E) k=0 (3.24)

3.2. The band spectrum

The results of the previous subsection imply that, as in the hyperbolic case, the trigonometric
Razavy potential is algebraically QES wh&he N (see, for instance, equation (3.13)). We
shall see in this subsection how this fact can be used to exactly compute a certain number of
gaps in the band energy spectrum of the potential (3.1), and shall furthermore determine the
location of these gaps in the spectrum.

We start by briefly recalling certain well known facts about the energy spectrum of a
Schibdinger operator

H=—-8’+U(x) (3.25)
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whereU is a continuous periodic function of periad> O:

Ux)=U(x +a) Vx € R. (3.26)
A real numberE belongs to the spectrum éf if the differential equation
(H-E)} =0 (3.27)

has a bounded nonzero solutigix). It can be shown [23,24] that the spectrum of the operator
(3.25), (3.26) is the union of an infinite number of closed intervafe(gy bands| Eo, E1],
[Ez, E1], [Eg, E3], ..., where

E0<E1§E2<E1§E2<E3§E4<-~-
and
lim Ex = lim E; = +oo.
k—00 k k—o00 k o0
Thegapsin the energy spectrum are thus the (possibly empty) open intervals
(E1, E2), (E1, E2), ..., (Ex, Exs1), (Ex, Egsa), . .. k=12 ....

The numbers:; (k =0, 1, 2, ...) are characterized by the existence of a nonzeperiodic
solution ¢, of the differential equation (3.27) faE = E;. The latter condition is clearly
equivalent toy; being a nonzero solution of the Sturm-Liouville problem with periodic
boundary conditions

(H-—E)Y(x)=0 O<x<a
v (0) =¥ (a) ¥'(0) = ¥'(a)
with eigenvaluet’ = E;. Notethatty, = E;.; ifand onlyif (3.28) has two linearly independent
solutions. Likewise, the numbeis, (k = 1,2, ...) are characterized by the fact that the

differential equation (3.27) witht' = E, possesses a nonzero anti-periodia-f@riodic)
solutionyr, that is, a solution), such that

Yi(x +a) = =i (x) Vx e R.
Equivalently,i; is a solution of the Sturm—Liouville problem

(H-—E)y(x)=0 O<x<a

v (0) =—vy(a) ¥'(0) = =y (a)

with eigenvalueE = E;. Finally, itis shown in [25] that fok = 0, 1, 2, . . . the eigenfunction
Yy has exactly + 7 (k) zeros in the interval [Qz), where

m(k) = 3[1+(—D*

(3.28)

(3.29)

is the parity ofk. A straightforward adaptation of Ince’s proof shows tilathas exactly
k+m(k) —1zerosin[Qa), wherenowk =1,2,....

Let us now turn to the trigonometric Razavy potential (3.1), which we know from the
previous discussion to be algebraically QESXbr= N. For convenience, we shall use in what
follows the representation (3.7), (3.8) of the trigonometric Razavy potential as an algebraic
QES potential. From (3.24) it follows that the polynomi#8'(E) satisfy the recurrence
relation

PY(E) = (E +b) PY(E) — ax P{SY(E) k>0
where the coefficients, andb; are given by (2.24) with = M — 1. In particular, the

coefficientay, vanishes identically, which in turn implies thakif is a root of the polynomial
PJ'(E) thenthe series (3.18) truncateg¢at M — 1, and therefore the functiopf” (x) given
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by (3.19) is a regular, bounded solution of the Schinger equation (3.20). Since it can be
shown [12] that the polynomiaP?™ has exactlyM different real roots, we can algebraically

computeM solutions of the Sclidinger equation (3.20) of the form (cf equations (3.14),
(3.18), and (3.19))

1hpjer(x) _ efgcos&fi(Mfl)x(pj(eZiX) 1<j<M (3.30)

wheree; is any of the roots oP}"(E) andg; is a polynomial of degree at mo&t — 1. From
the latter equation we find that

PP (x + 1) = (=DM PP () (3.31)

and therefore thé/ algebraically computable solutions (3.30) areperiodic for M odd,
and anti-periodic forM even. Furthermore, from (3.30) it also follows that each of the
M algebraic eigenfunctiongf™ has at most¥ — 1 roots in the interval [Or). Thus
for M even the algebraic eigenfunctions (3.30) coincide with Mhdowest anti-periodic
eigenfunctions)y (x) (k = 1, ..., M), and the algebraically computable energies—the zeros
€; of the critical polynomlaIPp (E) —are the lowesM ‘anti-periodic’ energie€, ..., Ey.
Likewise, for M odd the algebraic eigenfunctions are the lowdsperiodic eigenfunctions
Ye(x) (k =1, ..., M), and the corresponding algebraic energies ardfHewest ‘periodic’
energiesEy, ..., Ey_1. Since the gaps in the energy spectrum of a periodic Hamiltonian
are limited by two energies of theametype (periodic or anti-periodic), this means that the
knowledge of the algebraic energies allows us to exactly compute a certain number of gaps
in the spectrum. More precisely, whéfi is even then we can algebraically compute the first
M /2 anti-periodic gap$E1, E»), (Es, Ea), ..., (Ey—1, Ey) in the energy spectrum of the
trigonometric the Razavy Hamiltonian or, equwalently, the fivst2 odd gaps. Similarly,
when M is odd then the algebraically computable energies are the groundrstated the
first(M —1)/2 = [M /2] periodic gapSE1, E2), (E3, E4), ..., (Ey_2, Ey—1) OF, what is the
same, the ground state and the fir&t/R] evengaps in the energy spectrum. In particular,
for M even we can algebraically compute fitst gap(E1, E») in the energy spectrum of the
trigonometric Razavy Hamiltonian, while faf odd we can always compute the ground state
Ep. Note also that, since the algebraically computable gaps are never consecutive, we cannot
exactly compute any of the allowed energy bands. Figure 2 shows the first five allowed energy
bands for the trigonometric Razavy potential as a function of the paramétens = 5.

The differential equation (3.27) with the potential (3.1) is well known in the theory of
periodic differential equations under the naméAdfittaker—Hill's equationor Hill’s three-
term equation, [26, 27]. It is of interest in the latter context mainly because, unlike the much
better known Mathieu’s equation, for certain values of the spectral pararfeteadmits
so-calledfinite solutionsi.e., solutions of the form

Y(x) =€ 2% (x)

wheregp(x) is a trigonometric polynomial. It follows from equation (3.30) that the algebraic
eigenfunctions obtained in this section are finite solutions. In fact, the converse also holds,
namelyall finite solutions are algebraic eigenfunctions. This follows at once from theorem 7.9
of [27], which states (in our notation) that for eath € N the Whittaker—Hill equation has

at most M /2] gaps of periodic (ifM is odd) or anti-periodic (if\/ is even) type. For even

M, we have shown that there are exacuy anti-periodic algebraic eigenfunctions, whose
corresponding/ eigenvalues definexactlyM /2 gaps of anti-periodic type. Since, for these
values ofM, there are also exactlyf anti-periodic finite solutions and eigenvalues [26], it
follows from the theorem quoted above that the finite solutions coincide (up to a constant
factor) with the algebraic eigenfunctions. A similar argument is valid wifeis odd.
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=50 "
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Figure 2. Allowed energy bands (in grey) for the potential (3.1) with= 5 as a function of .
The solid boundary curves correspond to the algebraically computable (periodic) energies, while
the grey boundary curves have been obtained numerically.

In order to compare our findings with the classical theory, it is more convenient to use the
representation (3.5), (3.6). Applying the anti-isospectral transformation to equations (2.7) and
(2.11) of section 2, it follows that the algebraic (unnormalized) eigenfunctions can be classified
as follows:

M even:
M_q A
— @ 3C0sX < Pk0+(_E) k+1
Y(x) =€ ; Gl co<* x (3.32)
N = e P
Yx)=€2 sinx ; —~ o co x (3.33)
M odd:
—zcos&MTi1 ﬁk+0(_E) k
Y(x) =€ g ~ co x (3.34)
—£ cos & ﬁ_o(_E) +
W(X) =e 2 Z‘SIHxQMCOS% lx. (335)

In the above formulae, the polynomiafg‘”’ are defined by the recursion relation (2.12),
(2.13), andE is one of the algebraically computable energies, +,is a root of the critical
polynomlaIsPM - PA°472, P(+,3+1 )20 andP(M 1,2+ respectively. Comparing with the formulae
in section 7.4. 1 of [26] we easily find that,jf(x) is an algebraic eigenfunction of one of the
four types (3.32)—(3.35), then €52y, (x) is proportional, respectively, to thece polynomial
Cf}*ﬁ,Sﬂ‘*i,Cf} 1, ands%_ where (in the notation of Ince, cf [26F) = a2*1, b2+ 42k

orb3 ., respectively.

The results of this section can therefore be interpreted as providing a deep Lie-algebraic
justification for the exceptional fact that the Whittaker—Hill equation admits finite solutions.
This observation is further corroborated by the fact that other periodi@8ictger equations
known to have finite solutions (in a slightly more general sense) as, for instance, tlee Lam
equation, are also algebraically QES [6, 10, 28, 29]. The above results underscore the close
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connection between the existence of finite solutions of Hill's equation, on the one hand, and
the algebraic QES character of its potential, on the other. This remarkable connection certainly
deserves further investigation.
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